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Mode Coupling in Coaxial Waveguides with
Varying-Radius Center and Outer Conductors

Jamal Shafii, Student Member, IEEE, and Ronald J. Vernon, Member, IEEE

Abstract—The mode conversion process in a coaxial waveguide
with varying-radius center and outer conductors is shown to be
described by a system of first-order differential equations—the
coupled mode equations. The nondiagonal coefficients of this sys-
tem are called the coupling coefficients. In this paper, we derive
the explicit expressions for the coupling coefficients in a varying-
radius coaxial waveguide and discuss some of their important
features. These ceoefficients can be used in determining model
conversion in a coaxial cavity with slowly varying walls or design-
ing and analyzing coaxial waveguide tapers and mode converters.
Some experimental results of the coupling coefficients for the case
of azimuthally symmetric modes, TEq,, modes, are also given.

I. INTRODUCTION

YROTRONS have been used to heat magnetically
Gconﬁned plasmas encountered in fusion research at
the electron-cyclotron-resonance frequency. High-power
millimeter-wave gyrotrons have recently been designed with
highly overmoded coaxial resonators [1], [2]. It has been
shown that the inclusion of an inner conductor in the
gyrotron’s cavity can reduce mode competition and hence
may lead to more stable operation in the desired mode in
the cavity by moving the resonant frequencies of competing
modes [1], [3].

It is important to examine mode conversion in overmoded
coaxial waveguide cavity resonators with a varying-radius wall
profile. It will also be required to taper the diameter of the
outer and/or center conductor with negligible mode conversion
outside the cavity (but within the tube) [4]. It may also be
desirable that the cavity’s output mode be converted into a dif-
ferent mode by means of one or more coaxial mode converters.

In this paper, we derive the coupling coefficients and
discuss mode coupling in overmoded coaxial waveguides with
varying-radius center- and outer-conductor profiles. By an
overmoded waveguide, we mean a waveguide whose cross
section is large enough such that, in addition to the TEM
mode, higher-order modes can also propagate. The material
in this paper is an extension of work briefly reported by Shafii
and Vernon in 1992 [5].

We represent the fields at any cross section of the nonuni-
form coaxial waveguide as a superposition of the fields of
the eigenmodes of a uniform coaxial guide of the same
cross section. The amplitudes of these eigenmodes depend
on the coordinate along the axis of the varying-radius guide.
From Maxwell’s equations, the mode amplitudes are shown to
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be described by a system of first-order ordinary differential
equations. The coefficients of this system are called the
coupling coefficients.

This method of derivation of the coupling coefficients is
sometimes called the method of cross sections [8], [10]. This
method has been used in analyzing mode coupling in hollow
waveguides with different types of wall irregularities such as
waveguides with a varying-radius wall profile for the case
of azimuthally symmetric transverse electric modes [6], [7],
corrugated waveguides with varying corrugation depth and
diameter change [8], [9], acoustic waveguides [10], and curved
waveguides of constant cross section with varying curvature
and filled with an inhomogeneous material [11].

In Section II of this paper, the integral expression for the
coupling coefficients is discussed. (In Appendix I, a brief
derivation of the integral expression is given.) In Section III,
an alternative expression for the coupling coefficients is given
which consists of line integrals of the fields of the normal
modes along the boundary of the waveguide cross section.
In Section IV, the normal-mode fields of a uniform circular
coaxial guide are presented. These normal-mode fields are used
to derive the explicit formulas for the coupling coefficients in
Section V. In Section VI, the validity of the method of cross
sections is discussed. Some numerical and experimental results
are presented in Sections VII and VIII, respectively.

II. THE INTEGRAL EXPRESSIONS FOR THE COUPLING
COEFFICIENTS IN A VARYING-RADIUS COAXIAL WAVEGUIDE

We assume that the axis of the nonuniform waveguide
coincides with the z-axis of the cylindrical coordinate system
p, ¢. and z, and that the guide is homogeneously filled with
isotropic, lossless matter, the plane wave number of which is

k= wy/ie M

where p and e are, respectively, the permeability and the
permittivity of the medium inside the guide. The time variation
is taken to be /¥, The walls of the guide are taken to be of
perfect conductor. Hence, the coupling mechanism is nondis-
sipative. (Coupling due to ohmic wall losses are normally
negligible compared to coupling due to wall distortions in
guides fabricated from good conductors.)

The boundary conditions on the electric field £ and the
magnetic field H at the outer wall of the guide are

Ey=0 (2a)
E,+FEy,tanf =0 (2b)
H,—-H.tanf =0 2¢)
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where f is the angle that the tangent line to the outside
wall makes with the z-axis. The boundary conditions at the
center-conductor wall likewise become

Ey=0 (3a)
E.+ E tany) =0 (3b)
H,—~H,tanyp =0 30)

where 1 is the angle that the tangent line to the center-
conductor wall makes with the z-axis.

We consider some cross section of the nonuniform wave-
guide § = 5, at z = z,, as illustrated in Fig. 1, and construct a
uniform waveguide with the same local cross section S,. We
then expand the fields of the nonuniform guide at the cross
section S, in terms of the normalized fields of the modes of
the uniform guide as follows:

Zv 2)éer(p, §) (42)

E, :ZUT(z)eﬂ(p, ¢) (4b)
ZI Ve (p, & (40)

(4d)

H, = ZZT(Z)hZT P’

Here, é,(p, ) and h.(p, ¢) are only functions of the trans-
verse coordinates. The nonnegative integers 7 or v are used
as indices for the eigenmodes. Furthermore, the subscripts ¢
and z, respectively, denote the transverse and the z—directed
components of the fields. The “~” over the functions in (4)
indicates that these functions are normalized such that they
satisfy the orthogonality relations given below

/ / & -85, dS = 6., (52)

So

/ / by - hy,dS =6, (5b)
So

/ / &8, dS =6, (62)
So

/ / Forht, dS = 68, (6b)
So

where superscript * denotes the complex conjugate. Due to the
normalization relation (5), the complex power flow in each
mode 7 is P, = V_I'. The series expansion (4) does not
converge uniformly. For example, €., vanishes at the walls
of the guide but according to (2b) or (3b), E, doe not. This
same argument also applies for the series expansion H,. It is
shown in Appendix I that the coupled differential equations are
valid even though the field representation (4) is not uniformly
convergent at the walls of the guide. The infinite series in (4)
converges in the mean-square sense.

Let A} and A be, respectively, the normalized complex
amplitudes of the forward and backward propagating mode v
at S = S,. We then have the following relations:

V, =V Z, (A + A7) (7a)
_ 1 +_op-
- \/Z_V(A" A7), (7b)

DOuter Conductor

s
W

o | Center Conductor

Fig. 1. The profile of a coaxial waveguide with varying-radius center and
outer conductors.

The power transported in the +&, direction by the v th mode is
given by |AF|?, and than in the —a. direction by |A; |*. Here,
Z, is the transverse mode impedance of the mode with index
v. As shown in the Appendix, the amplitudes of propagating
modes are described by the following system of ordinary
differential equations:

dAY + + A+ -
T = iBAT + Z"" Af + ;m,,TA (8a)
g, # AT+ AT 6
dZ v vT

where (3, is the propagation constant of the mode v in the
uniform waveguide with the cross section S,. The coupling
coefficients k%, are given by

1 1 Z [ Z
= _ | - Y e
Kyr = 5 (CVT Z, FO7, ZT> ’ vET )

1
gy = 5(Cow = C,) (10)
1 . 11 dz,
li};/ = i(cwj + Cl/l/) — iz (11)
Here the C,, is given by
1/7‘ = // et‘l’ : etu (12)

where the integral is taken over the waveguide cross section
So.

TII. ALTERNATIVE FORMULAS FOR
THE COUPLING COEFFICIENTS

Since the dielectric material inside the coaxial guide has
been taken to be homogeneous, coupling between modes
occurs only due to the variation in the geometry of the
waveguide walls. Hence, the coupling coefficients (9)-(12)
given in the last section may be expressed by line integrals
of the fields of the normal modes along the boundary of the
waveguide cross section as shown below.

We write the vector eigenfunction é;. of the normal modes
in terms of the transverse gradient of a scalar potential function
as

€r =@y XV ¥ (13)
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for TE, modes and

étT - _Vt \I/T (14)

for TM,, modes and the TEM mode [12]. Then we apply
Stoke’s theorem and Green’s first identity in two dimensions
to the waveguide cross section, and use the scalar Helmholtz
equation for the scalar potential function

VIV, + K20, =0 (15)

and various orthogonality and boundary conditions on the
potential function [12]. Furthermore, by using the following
identities at the wall of the outer conductor:

00V, _ _62\11,,

= tan 6 16
dz Op dp? an (16)
for TE, modes and
ov ov
T =" Ttand 17
0z dp an a7

for TM- modes [13] and similar identities at the wall of
the center conductor by replacing # with 1, we obtain the
following expressions for the coupling coefficients in terms of
the fields of the power normalized modes along the boundary
of the coaxial guide cross section.

The coupling coefficients between TE, and TE, modes are

1 1
ki =2 tan O(wphyhl,
200 F Br M (pherhs

dwphy by, — weeprey,) dl

_ %tan Plwphzr by, £ wphgr by, — weeyres,) dl}

c

(18)
— 1 * *
Kee = =5 b{tan&hwepr dl — j{tanz/;h ~Cpr dl}
11 dz,
T37 as
KE. =0 (20)

The coupling coefficients between TM,, and TM, modes are

1 1 j{
+ % *
Ky, = — tan 0(Lfwphy by, — weeyrel,) dl
9 ﬁu T /d’T li o ( Hhig Pv PT p )
— ftan Y(Lwphgrhy, — weeme:y) dl} 2n
c
ol 6 h *
K. = —3 otan orCrr dl — ctanwh¢Te,,T dl
11 dz; 29
27, dz (22)
Kl = 0. (23)

The coupling coefficients between TE,, and TM.,. modes are

1
_,k.',;_ =K, = n,:r':,j‘ = —5 l:]{ tan 0h¢re:,, dl

]

- j{tan Yhyrer, dl} .24

[

The coupling coefficients between the TEM (denoted by
subscript 0) and TM, modes are

1
—r} =k = kT k= 5 []{ tan hyrer, dl

o

- %tan Yhyrer, dl} . @25
In the above equations, e, (p, ¢) and h,(p, ¢) are, respec-
tively, the power normalized electric and magnetic fields which
can be obtained from the normalized fields of Section II as

follows:
€tr =V Zreyr (26a)
1 1
zr = >——'_k7' ~:‘r 26b
¢ Jwe L, ¢ (260)
1
hir = \/‘ZiThtr (26¢)
1 .
h:r = TV ZTkThZT' (26d)
Jwp
The fields above satisfy the power normalization
// (etr X B} ) -@,dS = 1. 27)
So

Furthermore, § dl and § dI, respectively, denote line inte-
grals along the boundary of the cross-section of the outer and
center conductors.

1IV. THE NORMAL MODES OF A UNIFORM
CIRCULAR COAXIAL WAVEGUIDE

To derive the explicit formulas for the coupling coefficients
from (9)-(12), we need to obtain the expressions for the nor-
malized eigenfields of a uniform circular coaxial waveguide.
The eigenmodes of a uniform coaxial waveguide consist of
TEn. TMy,y,, and TEM modes. The indices m and n, where
m=0,1,2,---andn =1, 2, - - take the place of v and 7 in
the previous sections. Here m identifies the number of periods
of the fields in the azimuthal direction, and n denotes the
number of half “periods” in the radial direction from p = a
to p = b. The radii of the center and outer conductors are
designated by a and b, respectively.

™ ., modes.;The transverse components of the eigenfunc-
tions, &[,,,,) and Ay, (the bracket around the indices indicates
a T™M mode) for TM,,,,, modes can be obtained from the
potential function

sin (me)

cos (mg)’ (28)

1

[(14) and (A-13). Furthermore, €.(mn = kimn)¥mn) and
hmn) = 0. The function frm (Ejpn)p) is defined as
frnm (Epmn1p) = T (imn) @) Non (Kjmng 0)

=N (kmn) @) I (Kfmnyp) - (29)

to simplify the notation. We also define fmm/(k’[mn] p) as
follows for future reference:

Fmmt (Kimn1p) = I (kmn) @) Ny, (Fma 0)

—Nm (k[mn]a')‘]?/n (k['mn}p)' (30)
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In (30), the prime on N, or .J,, denotes differentiation with
respect to the argument of the function. Here, .J,, is the Bessel
function of the first kind of mth order, and N,, is the Bessel
function of the second kind of mth order. Here k[mn] is the
solution of the equation fmm (kmn)b) = 0. The propagation
constant ] is obtained from

ki) + Bfony = K G

and the normalization constant is

/Wem

- (k[mn] a’)zfvznm' (k[mn} a))l/z (32)

2
e

The transverse wave impedance Zj,,) of a TM,,, mode is
ﬂ [mn] / We.

TE,n Modes: The transverse components of the eigenfunc-
tions, €(mpn) and h(ny), (the parentheses around the indices
indicates a TE mode) of the TE,,,, modes are obtained from
the potential function

where

ifm=20

ifm # 0. (33)

1
U mm) = ——)fmfm<k<mn)p){°.°s (md) (a4

o sin ()

(13) and (A-13). Furthermore, ﬁz(mn) = k(mn)¥(mn) and
€2(mn) = 0. The auxiliary function fr./m (K(mn)p) is defined as

fm’m(k(mn)p) - J;;(k(mn)a)Nm(k(mn)p)
_Nr’n(k(mn)a)Jm(k(mn)p)' (35)
Here k(p,,) is the solution of the equation
T (K (rnny @) Ny (b (mnyb) = Nop (B @) Jpn (kmnyb) = 0.

(36)

where R, (the subscript o indicates the TEM mode) is the
normalization constant and its value is

R, = V2x[In (b/a)]*/2.

The wave impedance Z, is y/u/€, and the propagation con-
stant G, is w,/pe.

(39)

V. THE EXPLICIT FORMULAS FOR
THE COUPLING COEFFICIENTS

From the mode functions of the transverse electric fields of
a uniform circular coaxial guide given in Section IV and the
integral equations (9)—(12), explicit formulas for the coupling
coefficients can be derived for the case of a varying-radius
coaxial guide. We can make the following general statements
with regard to the coupling coefficients for varying-radius
perturbations.
1) Only modes with the same azimuthal index m couple
to each other.
2) Only modes with the same polarization couple to each
other.
3) TEyp, and TMg, modes are not coupled to each other
since if one is copolarized, the other is cross polarized.
4) The TEM mode is only coupled to TMy,, modes.
The coupling coefficients between TE,,,, and TE,,,, modes
are

W = 1 €EmT 1
™ 2 Rmg) Rimn) K gy = B
nq| / :t K, (40)
{ 1 ﬂ(mq) ! ﬂ(mn)

when n # g¢. Here

1db
an = k(mq){ga«k(mn)b)z - m2)

' fm’m(k(mn)b)fm’m(k(mq)b)

The propagation constant B,y is obtained from k‘(z y T l1da 9 9
m - T kmn - m’'m kmn
ﬂ(mn) = k? and the normalization constant Ry,,) is adz (kmn)@)” = M) fntm (Ko @)
-fm,m(k(mq)a)}. 40
TEm
R(mn) = (((k(mn)b) - mz)fm m(k(mn)b)
When n = g, then &}, = 0 and
~((bmny@)? = m2) f 2 (B (mny@) > (37) 1
_ MTE€m M 1db 2
where ¢, is defined in (33). The transverse wave impedance Kpn = 5 RZ \bd™ (l"(mn)b)
of TE.,n mode is wit/Bimny- (mn)
TEM Mode: The normalized fields of the TEM mode can _ l_d_a 2 (k a)
d m/m\"(mn)
be shown to be aaz
1 1 dk
- 1 (mn) 42
o = o = 38 9 (mn) ( )
€po = hg Rop (3% 5 /3(2mn) d
dk(mn)
dz _k(mn)
(I“'(rrm)b)Z[(k(mn)a')2 - mz]fmm’(k(mn)b)% + (k(mn)a')z[(k(mn)b)2 - mz]fm’m(k(mn)m% (43)

(k(rnn)b)z[(k(mn)a’)2 - mz]fmm’(k(mn)b)a' + (I"(Tnn)(1)2[(]‘1(717,71)[))2 - mQ]f'm’m(k(mn)b)b
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where dk(y,)/dz) is (see (43), shown at the bottom of the
previous page).

The coupling coefficients between TM,,., and TM,,, modes
are

k[mnlk[mql

TEm,
I =

1
- K
" 2 R[mn]R [mq] 8

[m

ki q
V mg]

when n # ¢. Here we have

db
K = frm' (Kpmn)b) fmm (Kmg )b——
Frm! (K1) fonrms (Kma10)b -

da

_fmm’(k[mn]a)fmm’ (k[mq]a)aa (45)

When n = ¢, then x;, = 0 and

2

k db
- 7r€m [mn]
Fnn = 2 R‘[)mn] <bfmm (k[mn]b>
d
— a, Enm’(k[mn]a)_(j>
].kH fmm( mnb) "‘fmm( mnb)d

—iﬂ[mn] bfmm( n) )"'a'fm’m(hmn )

(46)

The coupling coefficients between TE,,,, and TM,,, modes
are
&
_ 1 ™m
2 R( mn)

Kimq ¥
ﬁ(mn)/B [mq]

db
X {fm’m (k(mn)b)fmm’ (}"[mq] b)a

Ryl

d
- fm’m(k(mn)u)fmm'(k[mq}a)'d_cj}~ 47

The coupling coefficients between the TEM mode and TMy,,
modes are

H'r:,r:o = *Ejn - h"u—n
ﬂ—k[()n] /Bo db . da
= (kignb)— — foor (krgnia)— |-
RoRiony \| Blon Joor (ongb) g = Joor (hiome) dz)

(48)

The coupling coefficients between the forward and back-
ward propagating TEM modes are

S+

kI =0

po = T (Ldb T
7 R2\bdz

(49)

1 da
a dz) (50)

V1. DISCUSSION OF THE METHOD OF CROSS SECTIONS

The coupled mode equations (8) are valid for the description
of nonuniform waveguides with a slowly varying cross section.
This is because the use of the transformation (7) restricts us to
propagating modes. Hence, in the formulation represented by
(8), it is assumed that the fields in the nonuniform guide can
be represented correctly by only the propagating modes, and
the evanescent modes are neglected. However, in nonuniform
waveguides with slowly varying cross sections, the evanescent
modes are rarely excited to any appreciable level [14]. [20].
Hence, including only propagating modes is usually sufficient.
Huting and Webb [21] have shown that it is not necessary
to require the slowly varying constraint if, in addition to
propagating modes, evanescent modes are considered in the
calculation by using the voltage-current formulation (A-17)
and (A-18). In the voltage-current formulation, the coupling
coefficient is C, given by (12) instead of #, ..

In order to apply the method of cross sections to more
rapidly varying cross sections where the evanescent modes are
not considered, we can approximate the wall of the nonuniform
guide at z = 2, with a uniform conical section where the slope
of the conical section is the same as that of the nonuniform
guide at z = z,. For the infinite series representation of the
fields of the nonuniform guide, we then employ the normal
modes of the uniform round conical coaxial guide. In this case,
the infinite series converges uniformly. The possible drawback
would be that the coupling coefficients might be considerably
more complicated, and may not be suitable for analysis and
synthesis of irregular waveguides. The coupling coefficients
between the conical TEy, modes of a slowly varying radius
holtow circular guide have been derived by Sporleder and
Unger [14]. In the present paper, we assume waveguides with
a slowly varying cross section, so cylindrical model functions
are used.

VII. DISCUSSION OF THE COUPLING COEFFICIENTS

Let us write the expression for the coupling coefficient from
mode mg to mode mn in the following form:

4+ db ~ da

ng nq,o% I{nq,c”(jz— (51)

where qu o will be referred to as the coupling factor for
the outer conductor and nnq . as the coupling factor for the
center conductor. In this section, some computational plots of
the coupling factors between modes propagating in the same
direction, i.e., &;f, , and &}, ., will be given.

The expressions for the field components in Section IV are
chosen such that the signs of the radial function of any of
the field components e,, hg, or h, are the same at the center
conductor. These field components for TE,,, and TM,,,
modes then alternate in sign with increasing or decreasing n
at the outer wall. This is shown in Fig. 2 for the case of the
longitudinal component of magnetic field, A, for TEg,, modes.

The sign of the coupling factor depends on the signs of
the fields at the walls. Specifically, the signs of the coupling
factors for the center conductor are the same from the TEg;
mode to higher-order TEj, modes, while these coupling
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hz (A/m)

Outer-Wall Radius = 13.88 mm
Center-Conductor Radius = 2.5 mm
Frequency = 60.0 GHz

gl s g

25 5.0 7.5 10.0 125

Radial Distance - o -{mm)

Fig. 2. The variation in the longitudinal component of magnetic fields of
four of TEg, modes in the cross section of a coaxial waveguide.

15.0

350
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E 200 |
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50 | '_-'//—'f_,,,z
/,;—IT’E;M_O“W TEos Cut-Off Radius
o 1 e f L i 1 i ) I L 1 ]

0 1 2 3 4 5 6
Center-Conductor Radius (mm)

Fig. 3. The coupling factor for the center conductor between the TEq; and
four higher-order TEg,, modes as a function of the center-conductor radius.

factors for the outer wall alternate in sign. This is illustrated
in Fig. 3 where we have plotted the coupling factors for the
center conductor as a function of the center-conductor radius.
Fig. 4 shows the coupling factors for the outer conductor as a
function of the outer-conductor radius.

By letting the radius of the center conductor become vanish-
ingly small, i.e., when ¢ — 0, and by using the small argument
expressions for the Bessel functions, one can show that the
coupling factors for the center conductor vanish, except for the
case of TMy,, modes and the TEM mode (which are discussed
below), while the coupling coefficients due to the outer-wall
radius variation converge to those of a hollow circular guide
with a varying-radius wall. These hollow waveguide coupling
coefficients have already been derived by others [15], [16].

For TMy,, modes, as the radius of the center conductor
becomes small, the center conductor behaves like a line charge.
The transverse fields, E, and Hg, of TMg, modes become

200 ¢ Frequency = 60 GHz
Center-Conductor Radius = 2.00. mm
150 \
| \ —
__ 100 \
E ..
z gl 0 TTEme—e .
8 TEoe - TE
8 0 ~— — TEos-TEu
L |l ——=-- TEos - TEx
o>
£ -50
Q e - ——
2 e
O-00p —
-150 |
| TEos Cut-Off Radius
_200..‘1.‘.|...1.1-|...|
10 11 12 13 14 18

Outer-Wall Radius (mm)

Fig. 4. The coupling factor for the outer wall between the TE¢; and three
higher-order TE(, modes as a function of the outer-conductor radius.

500 -
TMo2 - TMo1
— —  TMos- TMoi
————— TMos - TMoy
400
E
S~
T 300
]
7]
[}
w
2 200
a
3
Q
(&)
100
Frequency = 60 GHz
Outer-Wall Radius =13.89 mm
o|||I||||Al|||1‘l‘||ll|||
0 1 2 3 4 5 6
Center-Conductor Radius (mm)
Fig. 5. The coupling factor for the center conductor between the TMg1 and

three higher-order TMg,, modes as a function of the center-conductor radius.

very large at the surface of the inner conductor, and hence
the coupling factors for the center conductor between TMg,
modes diverge as the radius of the center conductor decreases.
In the center of a hollow circular guide, %, is maximum for
TMy, modes, but a conducting line at the center forces the
longitudinal field E, to become zero. Three of the coupling
factors for the center conductor from TMy; to TMg, modes
have been plotted in Fig. 5 as a function of the center-
conductor radius. Between TM,,,, modes with m # 0, the
coupling factors for the center conductor tend to zero as the
inner-conductor radius vanishes. The longitudinal electric field
at the center of a hollow circular guide is zero for these modes.

The coupling factors for the inner conductor between the
TEM and TMy,, modes also diverge as the radius of the center
conductor tends to zero. The coupling factors for the outer wall
between these modes vanish as a — 0.
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Fig. 6. The profile of the center and outer conductors of the coaxial
waveguide used in the experimental study of the coupling coefficients between
TEp, modes.

For rotating modes with exp (—jm¢) or exp (jm¢g) depen-
dence instead of stationary modes with cos (m¢) or sin (mg)
dependence, ¢, = 2 for all m instead of (33). The coupling co-
efficients (40)—(50) are still valid for rotating modes since, on
closer examination, we observe that the coupling coefficients
are not dependent on ¢,,.

VIII. EXPERIMENTAL RESULTS

In this section, we report on the experimental results of
mode conversion for the azimuthally symmetric transverse
electric modes (the TEg, modes) at 60 GHz in a coaxial
waveguide in which the radius of both the center and outer
conductors vary. The varying-radius coaxial guide designed
for this experiment, shown in Fig. 6, is composed of two
identical tapered sections with a uniform section of waveguide
in between. The angle that both the inner and outer conductor
tapers make with the z-axis is 5°. The diameter of the
outer conductor at the ends in 2.779 c¢m, and the diameters
of the uniform center and outer conductors in between the
tapered sections are 0.721 cm and 2.423 cm, respectively. The
lengths of the center- and outer-conductor tapered sections are,
respectively, 4.115 cm and 2.032 cm.

The coupled mode equations (8) for the forward-propagating
TEg, modes were numerically integrated along the varying-
radius coaxial waveguide. The input is assumed to be a pure
TE(; mode with unit power. The length of the uniform section
is chosen to maximize the amount of mode conversion from
the TEy; mode to the TEy2 mode. The computed amplitude of
TE(; mode and the coupled higher-order TEg,, modes along
the guide are plotted in Fig. 7. The TEg, and TEy5 modes
are evanescent in the small-diameter region of the waveguide.
They were included in the calculation in the region in which
they can propagate in order to ascertain that coupling to
them was negligible. The ohmic losses were included in the
calculation.

The mode conversion efficiencies were measured at low
power level. This was done by feeding a TEg; mode into one
end and measuring the F; component of the far-field radiation
pattern from the output end. The mode content of each of the
TEg, modes present can be determined to within about 2%
from this open-end radiation pattern [17]. The center conductor

1.0 11.0
L TEo |
08 — — TEe2 10.8
b e o o= = TE“ m
[omememeeeeees TEos4
3 0.6 | Frequency = 60 GHz j 0.6
3
g I ]
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0.0 '/'f -1\~,J Yoo \L '\;i'/'l' weeke 1 10
0 2 4 6 8 10 12 14 16 18 20 22

Distance (cm)

Fig. 7. The theoretical amplitudes of the incident TEg; mode and the
coupled TEp, modes along the varying-radius coaxial waveguide of Fig. 6.

was supported by two thin styrofoam dielectric cylinders with
a dielectric constant of about 1.03. Experiment showed that the
mode conversion level from TEg; to TEgo decreases slightly
as the styrofoam sections were made longer. Hence, here the
effect of the supporting styrofoam sections is to lower the
mode conversion. In the computational results presented in
this section, the effect of the styrofoam is not accounted for,
but is believed to be small.

The circular waveguide TEg; mode input into the varying-
radius coaxial guide was obtained by using a mode transducer
which converts a rectangular waveguide TE;; mode to a
circular waveguide TEy; mode followed by a circular wave-
guide mode filter, both of which are commercially available
(from Alpha-TRG). The circular waveguide diameter of these
devices was only 0.968 cm, so a special up-taper was designed
to taper to the necessary 2.779 cm diameter. The radiation
pattern was measured with a 1.65 m rotating arm on which
a small receiving horn was mounted. The signal was detected
using a superheterodyne receiver. The comparison between
the measured and computed E4 component of the far-field
radiation patterns of the TEy; mode is shown in Fig. 8. The
TEp; mode at the 2.779 cm end has a mode purity of greater
than 99%.

In Fig. 9, the £y component of the measured far-field
radiation pattern output from the varying-radius coaxial guide
is compared to the F, pattern resulting from the computed
amplitudes of the modes at the output. The agreement is good.
The measured £y radiation pattern of the input TEy; mode is
also plotied in this figure. The measured and computed power
levels of the TEy,, modes with significant amplitudes at the
output are listed in row 3 of Table 1. The data in the first row
of this table correspond to a coaxial guide having a uniform
outer wall with a diameter of 2.779 cm and a center conductor
with the same radius profile as that for the coaxial guide shown
in Fig. 6. The data in row 2 correspond to a hollow waveguide
with the same radius profile as that of the outer wall of the
coaxial guide shown in Fig. 6.
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TABLE 1
PERCENT MODAL POWER AT THE END OF THE COAXIAL WAVEGUIDE
Theory Measurement
Teq | oz | TEos || TEon | TEgz | TEqa
Varying—Radius Center Cond. | 9089 | 8.91 | 0.20 || 9223 7.66 | o1
Outer—Woll Diameter = 2.779 om
Vorying—Radius Outer Cond.
Pt 86.89 |12.61 | 050 || s0.95] 878 | 027
Varying—Radius Center Cond.
Vorying—Radius Outer Cond. 80.26 | 19.14 | 0.60 || 83.16 | 16.80 | 0.04
—  Measurement computational results. 1) The transition regions between the
————— Theory tapered and the straight sections of the coaxial waveguide are
0r 40 abrupt, as seen in Fig. 6. In these sharp regions, the coupling
coefficients are not valid. 2) It is difficult to center the center
conductor precisely. 3) There is also some undesired mode
40 | {10 conversion due to the misalignment of the different waveguide
> sections that were used in the experimental setup.
) |
=
3 -20 1-20 IX. CONCLUSION
£ s
E 3 'l‘. :\ We have derived the explicit formulas for the coupling
I coefficients in a varying-radius coaxial waveguide, and dis-
~30 & " N 1730 cussed the signs of the coupling coefficients for the center
1 1 ] and outer conductors. A simple coaxial tapered section, where
In 141 p p
~ 'm :{\‘| ~ both the inner and outer radii vary, was designed to check
-40 bbb A LR 40 for TEp, modes, the coupling coefficients, and particularl
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Fig. 8. The measured and computer far-field radiation patterns of the TEqy
mode which was the input into the varying-radius coaxial guide of Fig. 6.
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Fig. 9. The measured and computed far-field radiation patterns of mode
mixtures at the output end of the varying-radius coaxial guide of Fig. 6. The
input mode is the TEg; mode.

The discrepancy between the measured and theoretical
results might be due to one or more of the following mode
conversion mechanisms that are not accounted for in our

their relative signs at the guide walls. The experimental results
show reasonable agreement with theory, and clearly show the
sign convention is correct. By letting the radius of the center
conductor become vanishingly small, the coupling coefficients
due to outer wall variations agree with those of a hollow
circular guide with a varying radius.

X. APPENDIX 1
DERIVATION OF THE COUPLED DIFFERENTIAL EQUATIONS

Below, we briefly sketch the derivation of the coupled
differential equations for the propagating modes that appear in
(8)—~(12). These equations were originally obtained by Reiter
[18] and Solymar [13] for the case of nonuniform hollow
waveguides.

We define the inner product between two scalar functions
uy and uy over the waveguide cross section S, by

(ul,ug):// ulu;dS
So

where * indicates the complex conjugate of the function.

Our goal is to derive a system of coupled differential
equations describing the complex coefficients V. and I, of
the infinite series expansion (4). Maxwell’s curl equations for
the total fields in the waveguide in the cylindrical coordinate
system are

(AD)

10 7

2 %5 % — _iwouH A2
pa¢Ez aqua Jwpt, (A2a)
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aEp - 8pEz = —jwuHy (A2b)
10 10 .
10 ) .
p % -y Hy = jweE, (A2d)
0 0
8_sz - a—sz = jUJEE¢ (AZe)
10 1 8 ,
pap(pH¢) 8(]5 = jwek,. (A2f)

Starting from (AZ2a), and taking its inner product with €4,
over S,, we have

<1 68¢Ez» 6¢u> <%E¢a é¢u> = “jwlL(Hpa é¢u>- (A3)
The series expansion (4) of the fields converges in the mean-
square sense, but term-by-term differentiation of the infinite
series requires stronger convergence. Hence, in general, we
cannot take the differential operators inside the sum. Therefore,
to avoid this difficulty, we use integration by parts to transfer
the differential operators to the second term of the inner
product.

Applying integration by parts and noting that €4, vanishes
at the wall of the guide, the first inner product in (A3) becomes

(b )= 2
pa¢ zy Cov z»pa¢¢u
and the second inner product yields
0 - 7] . .
<§E¢, 6¢,,> = £<E¢, 6¢,,> — <E¢, &6¢V>. (AS)
Equation (A3) hence reduces to

10 . 0 - o .
_<Ez7 ;3—¢6¢u> - 5;<E¢>, €sw) + <E¢>7 $€¢v>
= —jwp{H,, é4y).

We then substitute the infinite series representation of the
fields into (A6), and interchange the order of summation and
integration since the inner product is a continuous function of
its argument [19]. We thus have

2, . .
- ZUT<ez7‘7 _a¢e¢u> - %ZVT<6¢T7 e¢u>
+ ZVT<é¢n gédw> = _jW/LZIT<}~LpTa Egv).  (AT)

Next, we take the inner product of (A2b) with €, to obtain
7] . 7] . . -
b_z‘E’pa €ov ) — a—pEC, €ov ) = _.7“‘-’“<H¢7 epl/>- (A8)

Once again, by transferring the differential operators to the
second term in the inner products, we have

7] ~ 7] . .
<-a;Ep, ep,,> = ‘a—z<Ep, 6p,,> - <Ep, ae,,,,>

_ ]{ &, Eytan dl + f &, E,tan dl
(A9)

(A4)

(A6)

o} 1 e,
_zaNV = - zy —Cpy ) — Ez7—~u
<3pE “ > <E P > < ap" >

e b dl — }I{é:VEz dl (A10)

o

where ¢ and § , respectively, denote line integrals along the
boundary of the outer and center conductors. The line integrals
in (A9) arise to take into account the change in the cross
section of the guide in the z-direction. By substituting the last
two equations into (AS8), we then obtain

2, . g
$<Em Epv) — <Ep7 &CPV>
1 19,
+ Ez; —é v + <Eza =€ l/>
< p’ > ap "
= —jwu(Hg, €,).

The line integrals cancel each other due to the boundary con-
ditions (2b) and (3b). Using the infinite series representation
(4) in (All) and interchanging the order of summation and
integration, we obtain the following:

g

aZmépT, Eov) — ZV <e,,7, e,,y>
+ ;'U‘r<é:'ry ;épu>
+ Zv<e %é,w>

= —jwny Ir(hgr, ). (A12)

(Al1)

'We then combine (A7) and (A12) and use the orthogonality
property of (5a) and also the relations

hir = & X & (A13)
<éz'ra Vt : étu> - kl/ 51/7' (A14)

to obtain
V +k, v, — ZV // & ey, dS = —jwul,. (A15)

Here, £, is the cutoff wavenumber of mode v.
We can also find the following relation between v, and I,
by taking the inner product of (A2f) with €.,
ky

Vy = — Ve
Jwe

(Al6)

Finally, by substituting the last equation into (A15), we
establish the first set of coupled differential equations as

follows:
—3Z,Bu 1, + ZV // etT- ewds (A17)

Here, Z,, is the transverse wave impedance of the mode with
index v.

The second set of coupled differential equations are derived
from (A2d) and (A2e). Specifically, we first take the inner
product of (A2d) with l~z¢l, and then the inner product of (A2e)
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with in,,, and combine the two to obtain the desired second
set of coupled differential equations

I, B, cx 02
=i Ve ZIT//SOhtV co hrdS. (A18)

The system of coupled differential equations (A17) and
(A18) completely describes the coupling of modes in terms of
the modal voltage V,, and modal current [, in the nonuniform
guide.

For our purposes it is convenient to write the coupled
equations, not in terms of the modal voltage and current but in
terms of the amplitudes of forward and backward propagating
modes. The relation between these two formalisms is given in
(7).1f V, and I, in (A17) and (A18) are represented in terms of
A} and A, we obtain the coupled mode equations (8) for the
forward and backward propagating modes in a varying-radius
coaxial guide.

XI. ApPENDIX II

By using the Bessel function Wronskians and vanishing of
(29) and (36) at p = b, simplified expressions can be obtained
for the following terms:

2 Jm(k[mn]a)

S (Kpmn)b) = R O A B1)
I By a
o) = i) ™
Frvm (g ) = ‘m- (B4)
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