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Mode Coupling in Coaxial Waveguides with
Varying-Radius Center and Outer Conductors

~amal shafii, Student Member, IEEE, and ~onakl .T. Vernon, Member, IEEE

Abstract—The mode conversion process in a coaxial waveguide
with varying-radius center and outer conductors is shown to be
described by a system of first-order differential equations—the
coupled mode equations. The nondiagonal coefficients of this sys-
tem are called the coupling coefficients. In this paper, we derive
the explicit expressions for the coupling coefficients in a varying-
radius coaxial waveguide and discuss some of their important
features. These coefficients can be used in determining model
conversion in a coaxial cavity with slowly varying walls or design-
ing and analyzing coaxial waveguide tapers and mode converters.
Some experimental results of the coupling coefficients for the case
of azimuthally symmetric modes, TEo. modes, are also given.

I. INTRODUCTION

G YROTRONS have been used to heat magnetically

confined plasmas encountered in fusion research at
the electron-cyclotron-resonance frequency. High-power
millimeter-wave gyrotrons have recently been designed with
highly overmoded coaxial resonators [1], [2]. It has been
shown that the inclusion of an inner conductor in the
gyrotron’s cavity can reduce mode competition and hence
may lead to more stable operation in the desired mode in
the cavity by moving the resonant frequencies of competing
modes [1], [3].

It is important to examine mode conversion in overmoded

coaxial waveguide cavity resonators with a varying-radius wall

profile, It will also be required to taper the diameter of the
outer and/or center conductor with negligible mode conversion
outside the cavity (but within the tube) [4]. It may also be
desirable that the cavity’s output mode be converted into a dif-
ferent mode by means of one or more coaxial mode converters.

In this paper, we derive the coupling coefficients and
discuss mode coupling in overmoded coaxial waveguides with
varying-radius center- and outer-conductor profiles. By an
overrnoded waveguide, we mean a waveguide whose cross
section is large enough such that, in addition to the TEM
mode, higher-order modes can also propagate. The material
in this paper is an extension of work briefly reported by Shafii
and Vernon in 1992 [5].

We represent the fields at any cross section of the nonuni-

form coaxial waveguide as a superposition of the fields of

the eigenmodes of a uniform coaxial guide of the same

cross section. The amplitudes of these eigenmodes depend

on the coordinate along the axis of the varying-radius guide.

From Maxwell’s equations, the mode amplitudes are shown to
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be described by a system of first-order ordinary differential

equations. The coefficients of this system are called the

coupling coefficients.
This method of derivation of the coupling coefficients is

sometimes called the method of cross sections [8], [10]. This
method has been used in analyzing mode coupling in hollow
waveguides with different types of wall irregularities such as
waveguides with a varying-radius wall profile for the case
of azimuthally symmetric transverse electric modes [6], [7],
corrugated waveguides with varying corrugation depth and
diameter change [8], [9], acoustic waveguides [10], and curved
waveguides of constant cross section with varying curvature

and filled with an inhomogeneous material [11].
In Section II of this paper, the integral expression for the

coupling coefficients is discussed. (In Appendix I, a brief
derivation of the integral expression is given.) In Section III,
an alternative expression for the coupling coefficients is given
which consists of line integrals of the fields of the normal
modes along the boundary of the waveguide cross section.
In Section IV, the normal-mode fields of a uniform circular
coaxial guide are presented. These normal-mode fields are used
to derive the explicit formulas for the coupling coefficients in

Section V. In Section VI, the validity of the method of cross

sections is discussed. Some numerical and experimental results

are presented in Sections VII and VIII, respectively.

II. THE INTEGRAL EXPRESSIONS FOR THE COUPLING

COEFFICIENTS IN A VARYING-RADIUS COAXIAL WAVEGUIDE

We assume that the axis of the nonuniform waveguide

coincides with the z-axis of the cylindrical coordinate system

P, 4. and z’, and that the guide is homogeneously filled with
isotropic, lossless matter, the plane wave number of which is

k. w@& (1)

where p and e are, respectively, the permeability and the
permittivity of the medium inside the guide. The time variation
is taken to be e~ut. The walls of the guide are taken to be of

perfect conductor. Hence, the coupling mechanism is nondis-

sipative. (Coupling due to ohmic wall losses are normally

negligible compared to coupling due to wall distortions in

guides fabricated from good conductors.)

The boundary conditions on the electric field E and the
magnetic field II at the outer wall of the guide are

E4=0 (2a)

EZ+EPtan O=O (2b)

HP– H,, tan(3=0 (2C)
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where 6’ is the angle that the tangent line to the outside
wall makes with the z-axis. The boundary conditions at the
center-conductor wall likewise become

Ed=O

EZ+EPtan$=O

Hp– HZtan~=O

where + is the angle that the tangent
conductor wall makes with the z-axis.

(3a)

(3b)

(3C)

line to the center-

We consider some cross section of the nonuniform wave-
guide S = SO at z = ZO,as illustrated in Fig. 1, and construct a
uniform waveguide with the same local cross section So. We
then expand the fields of the nonuniform guide at the cross
section So in terms of the normalized fields of the modes of
the uniform guide as follows:

Et = ~VT(Z)etT(p, ~)
T

(4a)

(4b)

Ht = ~L(&(p, (b) (4C)
r

H, = ~iT(z)fiZT(p, ~). (4d)
r

Here, ii. (p, ~) and fi~ (p, ~) are only functions of the trans-
verse coordinates. The nonnegative integers T or v are used
as indices for the eigenmodes. Furthermore, the subscripts t
and Z, respectively, denote the transverse and the z –directed
components of the fields. The “N” over the functions in (4)
indicates that these functions are normalized such that they
satisfy the orthogonality relations given below

//
ktT . e;v dS = 6Tv (5a)

so

//
ht. . h;U dS = 6.. (5b)

so

(6a)

//
hzr~:v dS = S,v (6b)

s’,

where superscript * denotes the complex conjugate. Due to the
normalization relation (5), the complex power flow in each
mode T is PT = VTI~. The series expansion (4) does not

converge uniformly. For example, 6,. vanishes at the walls
of the guide but according to (2b) or (3b), E= doe not. This

same argument also applies for the series expansion HP. It is
shown in Appendix I that the coupled differential equations are
valid even though the field representation (4) is not uniformly
convergent at the walls of the guide. The infinite series in (4)
converges in the mean-square sense.

Let A: and A; be, respectively, the normalized complex
amplitudes of the forward and backward propagating mode v
at S = S0. We then have the following relations:

L(A: - A;).
lv=vZ

(7b)

Outer Conductor

sol
I—

Fig, 1. The profile of a coaxial waveguide with varying-radius center and
outer conductors.

The power transported in the +iiZ direction by the v th mode is
given by IA: 12,and than in the –6. direction by 1A; 12.Here,
Z. is the transverse mode impedance of the mode with index

v. As shown in the Appendix, the amplitudes of propagating
modes are described by the following system of ordinary
differential equations:

where ,bU is the propagation constant of the mode v in the
uniform waveguide with the cross section So. The coupling
coefficients K$7 are given by

Here the CV7 is given by

(12)

where the integral is taken over the waveguide cross section
s 0.

III. ALTERNATIVE FORMULAS FOR

THE COUPLING COEFFICIENTS

Since the dielectric material inside the coaxial guide has

been taken to be homogeneous, coupling between modes
occurs only due to the variation in the geometry of the
waveguide walls. Hence, the coupling coefficients (9)–( 12)
given in the last section may be expressed by line integrals
of the fields of the normal modes along the boundary of the
waveguide cross section as shown below.

We write the vector eigenfunction i2t. of the normal modes
in terms of the transverse gradient of a scalar potential function
as
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for TET modes and

for TM. modes and the TEM mode [12]. Then we apply
Stoke’s theorem and Green’s first identity in two dimensions
to the waveguide cross section, and use the scalar Helmholtz
equation for the scalar potential function

and various orthogonality and boundary conditions on the
potential function [12]. Furthermore, by using the following
identities at the wall of the outer conductor:

for TE7 modes and

(16)

(17)

for TM~ modes [13] and similar identities at the wall of
the center conductor by replacing O with IJ, we obtain the
following expressions for the coupling coefficients in terms of
the fields of the power normalized modes along the boundary

of the coaxial guide cross section.
The coupling coefficients between TEV and TE. modes are

(18)

1
t&=-—

2 [~
tan i$h~pep. dl –

!
tan + h&ep. dl

c 1
1 1° dZ,— ——
2 z. (h

(19)

K+ = ().
77

(20)

The coupling coefficients between TM. and TM. modes are

1 1 dZ7—
2 z. (LZ

(22)

K,+ = ().
7-7

(23)

The coupling coefficients between TEV and TM. modes are

_K+ =K– =K+* __;
‘VT VT ‘T,, — [1tan ~h+~e~vdl

20

The coupling coefficients between

subscript o) and TM. modes are
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the TEM (denoted by

_K+ = ~– = /# 1
07 or

TO* = –

[1
20

tan 6’hd7e~o dl

—
{ 1tan $h+.e~o dl . (25)
.C

In the above equations, e~ (p, #) and h7 (p, #) are, respec-
tively, the power normalized electric and magnetic fields which
can be obtained from the normalized fields of Section II as
follows:

e,. = &E,T (26a)

11
e —T —k7E=T (26b)

“ – Jw& &

‘“= Ah”
(26c)

hz~ = ~ &k.iz.. (26d)
jwp

The fields above satisfy the power normalization

//
(et~ x h;.) .iizdS = 1. (27)

s.

Furthermore, $0 dl and .~Cdl, respectively, denote line inte-
grals along the boundary of the cross-section of the outer and
center conductors.

IV. THE NORMAL MODES OF A UNIFORM

CIRCULAR COAXIAL WAVEGUIDE

To derive the explicit formulas for the coupling coefficients

from (9)–( 12), we need to obtain the expressions for the nor-

malized eigenfields of a uniform circular coaxial waveguide.

The eigenmodes of a uniform coaxial waveguide consist of
TEm.. TMmn, and TEM modes. The indices m and n, where
m=(), 1,2, . ..andn=l.2, . ..takethe place ofv and Tin

the previous sections. Here m identifies the number of periods

of the fields in the azimuthal direction, and n denotes the

number of half “periods” in the radial direction from p = a

to p = b. The radii of the center and outer conductors are

designated by a and b, respectively.
Tlfmn modes: The transverse components of the eigenfunc-

tions, @[mm]and ~[mnl (the bracket around the indices indicates

a TM mode) for TM~~ modes can be obtained from the
potential function

‘J[~~l= ~[mnl

{

sin (mq$)
-4mm(k[mnld Cos(mqfl)‘

[(14) and (A-13). Furthermore, ~ZLmnl = k[~~l ~[~~1

~z[~nl = O.The function ~~~ (k[wnl p) is defined as

fmm (@mnIP) = Jm(@mnla)~m(~[mn]p)

–Nm(k[mn]aJ)Jm (~[mn]P)

(28)

and

(29)

to simplify the notation. We also define fm ~, (~[mnIP) as
follows for future reference:

fmm (+mnlfl) = Jm(~[mnla)M4 (+mnIP)

–Nm(k[mn]aj)JL( k[mn]P). (30)
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In (30), the prime on lV~ or Jm denotes differentiation with where Ro (the subscript o indicates the TEM mode) is the
respect to the argument of the function. Here, J~ is the Bessel normalization constant and its value is
function of the first kind of mth order, and IVm is the Bessel
function of the second kind of rnth order. Here k[~~l is the RO = ~[ln (b/a) ]l/2. (39)

solution of the equation ~mn (k[~nl b) = O. The propagation The wave impedance ZO is ~, and the propagation con-
constant ,B[mmlis obtained from stant ~. is wJiK.

kfmn]+P?mn]=k2 (31)
V. THE EXPLICIT FORMULASFOR

and the normalization constant is THE COUPLING COEFFICIENTS

-(~[~~la)2f&m(k[~~la))’/2(32)

where

{

2 ifm=O
‘m= 1 ifm #O.

(33)

The transverse wave impedance Z[m.l of a TM~n mode is

@in]/~~.
TEmn Modes: The transverse components of the eigenfunc-

tions, ~(~~) and ~(n~), (the parentheses around the indices

indicates a TE mode) of the TEmn modes are obtained from
the potential function

From the mode functions of the transverse electric fields of
a uniform circular coaxial guide given in Section IV and the
integral equations (9)–( 12), explicit formulas for the coupling
coefficients can be derived for the case of a varying-radius
coaxial guide. We can make the following general statements
with regard to the coupling coefficients for varying-radius
perturbations.

1) Only modes with the same azimuthal index m couple
to each other.

2) Only modes with the same polarization couple to each
other.

3) TEO. and TMog modes are not coupled to each other
since if one is copolarized, the other is cross polarized.

4) The TEM mode is only coupled to TMon modes.

{

The coupling coefficients between TE~. and TE~g modes
cos (m~)~fm,~(k(~~)p) sin (m@)‘(mn) = R(mn) (34) are

~+–! Em71

(13) and (A-13). Furthermore, ~Z(mn) = k(mn) Ii7(~n) and ‘~ – 2 R(~q)R(~~) k~~g) – k~~~)

~.(~~) = 0. The auxiliq function .f~’~ (k(~.) P) is defined as

,f~J~(k(~~)P) = J&(~(~~)a)~~(~(~.p) {Ki@Kq.El (40)
–N~ (k[mn)a)Jm(k(mn) p). (35) when ~ ~ ~ Here

Here k(~~, is the solution of the equation

Jk(~(~~)cI)Xt(~(~.)~) – Mt(~(~~)a)JL(~(~~)~) = 0.
(36)

The propagation constant ~(mn) is obtained from k~mn) i-

@m.) = ~2 and the normalization constant R(mm) is

{
~4((k~mn)b)2- m’)‘w = “+mq)~&

. fm,m(k(mn)b)fmm( ~(mq)~)

—~~((k(mn)a)2–m2)fmm(~(mn)a)
\

r~(((~(mn)~)2- m2)fLm(~(mn)~) )~fmm(~(mq)a) . (41)
R(rrm) =

-((k~mn~a)2 - m2)j&,m(k~mnja) )’/2 (37)
When n = q, then K$% = O and

T&m m’
where em is defined in (33). The transverse wave impedance K;n=— ——

{
:~f:,m(k(mn)f)

of TEm.
2 R&m) b d~

mode is wp/~(mn).
TEM Mode: The normalized fields of the TEM mode can — :: f:,m(k(mn)a)

be shown to be }

(38) (42)
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where dk(m,,)/dz) is (see (43). shown at the bottom of the
previous page).

The coupling coefficients between TMm,n and TMmg modes

are

when n # q. Here we have

When n = q, then K:. = O and

(46)

The coupling coefficients between TE~n and TM,n~ modes
are

{
X fmIrn (k(mn)b)fmm (k[m,]b):

}–.fmm(k(mn)u).t’mm’ (’$rnq]~) g . (47)

The coupling coefficients between the TEM mode and TMO.
modes are

/7/%~~[ort] _

Rm[on] /+on] )food[on]g – foodk[on]a): .
,.

(48)

The coupling coefficients between the forward and back-
ward propagating TEM modes are

/#. = fJ (49)

(1 db 1 du

)
K;o=—~ –——–—

R: b d~ u d~
(50)

VI. DISCUSSIONOF THE METHOD OF CROSS SECTIONS

The coupled mode equations (8) are valid for the description

of nonuniform waveguides with a slowly varying cross section.
This is because the use of the transformation (7) restricts us to

propagating modes. Hence, in the formulation represented by
(8), it is assumed that the fields in the nonuniform guide can
be represented correctly by only the propagating modes, and
the evanescent modes are neglected. However, in nonuniform
waveguides with slowly varying cross sections, the evanescent
modes are rarely excited to any appreciable level [14], [20].
Hence, including only propagating modes is usually sufficient.
Huting and Webb [21] have shown that it is not necessary
to require the slowly varying constraint if, in addition to
propagating modes, evanescent modes are considered in the
calculation by using the voltage-current formulation (A- 17)
and (A- 18). In the voltage-cument formulation, the coupling

coefficient is CU7 given by (12) instead of ~U~.
In order to apply the method of cross sections to more

rapidly varying cross sections where the evanescent modes are
not considered, we can approximate the wall of the nonuniform

guide at z = .?Owith a uniform conical section where the slope
of the conical section is the same as that of the nonuniform

guide at z = ZO. For the infinite series representation of the
fields of the nonuniform guide, we then employ the normal
modes of the uniform round conical coaxial guide. In this case,
the infinite series converges uniformly. The possible drawback
would be that the coupling coefficients might be considerably
more complicated, and may not be suitable for analysis and
synthesis of irregular waveguides. The coupling coefficients
between the conical TEon modes of a slowly varying radius
hollow circular guide have been derived by Sporleder and
Unger [14]. In the present paper, we assume waveguides with
a slowly varying cross section, so cylindrical model functions

are used.

VII. DISCUSSION OF THE COUPLING COEFFICIENTS

Let us write the expression for the coupling coefficient from

mode m,q to mode mn in the following form:

(51)

where k~q, . will be referred to as the coupling factor for

the outer conductor and k~q, . as the coupling factor for the
center conductor. In this section, some computational plots of
the coupling factors between modes propagating in the same
direction, i.e., il$q, ~ and i%~g,~, will be given.

The expressions for the field components in Section IV are
chosen such that the signs of the radial function of any of

the field components eP, hd, or hz are the same at the center
conductor. These field components for TE~. and TM~n
modes then alternate in sign with increasing or decreasing n
at the outer wall. This is shown in Fig. 2 for the case of the
longitudinal component of magnetic field, h., for TEO. modes.

The sign of the coupling factor depends on the signs of
the fields at the walls. Specifically, the signs of the coupling
factors for the center conductor are the same from the TEO1
mode to higher-order TEO. modes, while these coupling
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Fig. 2. The variation in the longitudinal component of magnetic fields of
four of TEon modes in the cross section of a coaxiaf waveguide.
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Fig. 3. The coupling factor for the center conductor between the TEo1 and
fonr higher-order TEo~ modes as a function of the center-conductor radius.

factors for the outer wall alternate in sign. This is illustrated
in Fig. 3 where we have plotted the coupling factors for the
center conductor as a function of the center-conductor radius.
Fig. 4 shows the coupling factors for the outer conductor as a
function of the outer-conductor radius.

By letting the radius of the center conductor become vanish-
ingly small, i.e., when a ~ O, and by using the small argument

expressions for the Bessel functions, one can show that the

coupling factors for the center conductor vanish, except for the
case of TMO. modes and the TEM mode (which are discussed

below), while the coupling coefficients due to the outer-wall
radius variation converge to those of a hollow circular guide

with a varying-radius wall. These hollow waveguide coupling

coefficients have already been derived by others [15], [16].
For TMom modes, as the radius of the center conductor

becomes small, the center conductor behaves like a line charge.
The transverse fields, EP and H@, of TMo~ modes become

200 r Frequency =60 GHz
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150

1
100 I
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\ -.
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Fig. 4. The coupling factor for the outer wall between the ‘tT30I and three
higher-order TEo~ modes as a function of the outer-conductor radius.
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Fig, 5. The coupling factor for the center conductor between the TMOLand
three higher-order TMon modes as a function of tlhe center-conductor radius.

very large at the surface of the inner conductor, and hence
the coupling factors for the center conductor between TMo~
modes diverge as the radius of the center conductor decreases.
In the center of a hollow circular guide, E, is maximum for
TMon modes, but a conducting line at the center forces the
longitudinal field E, to become zero. Three of the coupling
factors for the center conductor from TMOI to TMon modes

have been plotted in Fig. 5 as a function of the center-
conductor radius. Between TMmn modles with m # O, the
coupling factors for the center conductor tend to zero as the
inner-conductor radius vanishes. The longitudinal electric field
at the center of a hollow circular guide is zero for these modes.

The coupling factors for the inner conductor between the
TEM and TMon modes also diverge as the radius of the center
conductor tends to zero. The coupling factors for the outer wall
between these modes vanish as a d O.
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Fig. 6, The profile of the center and enter conductors of the coaxial
waveguide used in the experimental study of the coupling coefficients between
TEon modes.

For rotating modes with exp (–jm~) or exp (jm~) depen-
dence instead of stationary modes with cos (m@) or sin (w@)
dependence, cm = 2 for all m instead of (33). The coupling co-
efficients (40)–(50) are still valid for rotating modes since, on
closer examination, we observe that the coupling coefficients
are not dependent on em.

VIII. EXPERIMENTAL RESULTS

In this section, we report on the experimental results of

mode conversion for the azimuthally symmetric transverse
electric modes (the TEon modes) at 60 GHz in a coaxial
waveguide in which the radius of both the center and outer
conductors vary. The varying-radius coaxial guide designed
for this experiment, shown in Fig. 6, is composed of two

identical tapered sections with a uniform section of waveguide
in between. The angle that both the inner and outer conductor

tapers make with the z-axis is 5°. The diameter of the
outer conductor at the ends in 2.779 cm, and the diameters
of the uniform center and outer conductors in between the
tapered sections are 0.721 cm and 2.423 cm, respectively. The
lengths of the center- and outer-conductor tapered sections are,
respectively, 4.115 cm and 2.032 cm.

The coupled mode equations (8) for the forward-propagating
TEO. modes were numerically integrated along the varying-
radius coaxial waveguide. The input is assumed to be a pure
TEO1 mode with unit power. The length of the uniform section

is chosen to maximize the amount of mode conversion from
the TEO1 mode to the TE02 mode. The’ computed amplitude of
TEOI mode and the coupled higher-order TEOn modes along
the guide are plotted in Fig. 7. The TE04 and TE05 modes
are evanescent in the small-diameter region of the waveguide.
They were included in the calculation in the region in which
they can propagate in order to ascertain that coupling to
them was negligible. The ohmic losses were included in the
calculation.

The mode conversion efficiencies were measured at low

power level. This was done by feeding a TEO1 mode into one
end and measuring the Ed component of the far-field radiation

pattern from the output end. The mode content of each of the
TEom modes present can be determined to within about 2910

from this open-end radiation pattern [17]. The center conductor
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02466101214161820 22
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Fig. 7. The theoretical amplitudes of the incident TEO1 mode and the
coupled TEo~ modes along the varymg-radiuscoaxial waveguide of Fig. 6.

was supported by two thin styrofoam dielectric cylinders with
a dielectric constant of about 1.03. Experiment showed that the
mode conversion level from TEO1 to TE02 decreases slightly
as the styrofoam sections were made longer. Hence, here the
effect of the supporting styrofoam sections is to lower the
mode conversion. In the computational results presented in
this section, the effect of the styrofoam is not accounted for,
but is believed to be small.

The circular waveguide TEO1 mode input into the varying-
radius coaxial guide was obtained by using a mode transducer

which converts a rectangular waveguide TEIO mode to a
circular waveguide TEO1 mode followed by a circular wave-
guide mode filter, both of which are commercially available
(from Alpha-TRG). The circular waveguide diameter of these

devices was only 0.968 cm, so a special up-taper was designed
to taper to the necessary 2.779 cm diameter. The radiation
pattern was measured with a 1.65 m rotating arm on which
a small receiving horn was mounted. The signal was detected
using a superheterodyne receiver. The comparison between
the measured and computed Ed component of the far-field
radiation patterns of the TEO1 mode is shown in Fig. 8. The
TEOI mode at the 2.779 cm end has a mode purity of greater
than 99’ZO.

In Fig. 9, the E@ component of the measured far-field
radiation pattern output from the varying-radius coaxial guide
is compared to the E@ pattern resulting from the computed
amplitudes of the modes at the output. The agreement is good.
The measured Ed radiation pattern of the input TEO1 mode is
also plotted in this figure. The measured and computed power
levels of the TEO. modes with significant amplitudes at the
output are listed in row 3 of Table I. The data in the first row
of this table correspond to a coaxial guide having a uniform
outer wall with a diameter of 2.779 cm and a center conductor
with the same radius profile as that for the coaxial guide shown
in Fig. 6. The data in row 2 correspond to a hollow waveguide
with the same radius profile as that of the outer wall of the
coaxial guide shown in Fig. 6.



SHAFH AND VERNON MODE COUPLING IN COAXIAL WAVEGUIDES WITH VARYING-RADIUS CENTER 589

0

-10
g

TABLE I
PERCENTMODALPOWERATTHEEm OFTHECOAXIALWAVEGUIDE

~fH*s Catercant.
Mu-wall Ohmntar .~menr

V=9fw-R+ outer Cond

(r’idlowoutdo)

V@ns-Radluo Cantercard
V@rkRodfus Outer Cond

— Measurement

----- Theory

Theory Mawuremart

% %s %3 h %s %3

90.69 &91 0.20 92.23 7.66 0.11

66.89 12.61 0.s0 90.95 %.70 0.27

60.26 19.14 0.60 63.16 16.00 0.04

\

f\
;1

I
I

-30 - 1
,1 I ,\
,1

I !I!l All

/1
,1
,Ifi

-40 h \!l 1

I

10

20

30

40
-90 -60 ~30 O 30 60 90

Theta (degrees)
Fig. 8. The measured and computer far-field radiation patterns of the TEOI
mode which was the input into the varying-radius coaxial guide of Fig. 6.
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Fig. 9. The measured and computed fnr-field radiation patterns of mode
mixtures at the output end of the varying-radius coaxial guide of Fig. 6. The
input mode is the TEo I mode.

The discrepancy between the measured and theoretical
results might be due to one or more of the following mode
conversion mechanisms that are not accounted for in our

computational results. 1) The transition regions between the
tapered and the straight sections of the coaxial waveguide are
abrupt, as seen in Fig. 6. In these sharp regions, the coupling
coefficients are not valid. 2) It is difficult to center the center
conductor precisely. 3) There is also sc)me undesired mode

conversion due to the misalignment of the different waveguide
sections that were used in the experimental setup.

IX. CONCLUSION

We have derived the explicit formulas for the coupling

coefficients in a varying-radius coaxial waveguide, and dis-

cussed the signs of the coupling coefficients for the center

and outer conductors. A simple coaxial talpered section, where

both the inner and outer radii vary, was designed to check

for TEon modes, the coupling coefficients, and particularly

their relative signs at the guide walls. The experimental results

show reasonable agreement with theory, and clearly show the

sign convention is correct. By letting the radius of the center

conductor become vanishingly small, the coupling coefficients

due to outer wall variations agree with those of a hollow

circular guide with a varying radius.

X. APPENDIX I

DERIVATION OF THE COUPLED DIFFERENTIAL EQUATIONS

Below, we briefly sketch the derivation of the coupled

differential equations for the propagating modes that appear in

(8)-(12). These equations were originally obtained by Reiter

[18] and Solymar [13] for the case of nonuniform hollow

waveguides.

We define the inner product between two scalar functions

U1 and U2 over the waveguide cross section So by

(u,, u,) =
/’/

UIU~ dS
so

(Al)

where * indicates the complex conjugate of the function.
Our goal is to derive a system of coupled differential

equations describing the complex coefficients VT and 17 of
the infinite series expansion (4). Maxwell’s curl equations for
the total fields in the waveguide in the cylindrical coordinate
system are
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(A2d)

(A2e)

(A2f)

Starting from (A2a), and taking its inner product with @4v

over S0, we have

The series expansion (4) of the fields converges in the mean-

square sense, but term-by-term differentiation of the infinite

series requires stronger convergence. Hence, in general, we

cannot take the differential operators inside the sum. Therefore,

to avoid this difficulty, we use integration by parts to transfer

the differential operators to the second term of the inner

product.

Applying integration by parts and noting that G4Vvanishes

at the wall of the guide, the first inner product in (A3) becomes

and the second inner product yields

Equation (A3) hence reduces to

( )
– EZ, %dv –

p a$ :(E’’’v)+(E’:”)
= –jwp(HP, 2~v). (A6)

We then substitute the infinite series representation of the

fields into (A6), and interchange the order of summation and

integration since the inner product is a continuous function of

its argument [19]. We thus have

($EZIEQV)=-(EZ+PV)-(EZ+A
‘iE~Ed’-@Ed’ (A1O)

where $0 and ~C, respectively, denote line integrals along the
boundary of the outer and center conductors. The line integrals
in (A9) arise to take into account the change in the cross
section of the guide in the z-direction. By substituting the last
two equations into (A8), we then obtain

= –jwp(H$, 6P.). (All)

The line integrals cancel each other due to the boundary con-
ditions (2b) and (3b). Using the infinite series representation
(4) in (Al 1) and interchanging the order of summation and
integration, we obtain the following:

gjyd%.>‘%) - ~v.(%.>$%.)
T r

‘w+)
‘?++)

= –jw~L(h@., 6,.). (A1’2)
T

We then combine (A7) and (A12) and use the orthogonality
property of (5a) and also the relations

ht. = a, x Et. (A13)

to obtain

;vv+k.u. –~v. //.iitT.;C;v‘S = –jw@v. (A15)
T so

Here, kv is the cutoff wavenumber of mode v.
We can also find the following relation between WVand I.

by taking the inner product of (A2f,) with ~ZV

k. ~
vv. —

iwc v‘
(A16)

Next, we take the inner product of (A2b) with EPVto obtain
Finally, by substituting the last equation into (A15), we

(:E@’pv)-($Ez’pu)=-’w~(H”’p) ‘As) follows “

establish the first set of coupled differential equations as

Once again, by transferring the differential operators to the ‘Vv

second term in the inner products, we have //–jZv/3vIv + ~VT Et. . ~k;v ‘S. (A17)

(~Ep’,v)= :(EpJEpv)-(Ep>~’pv) := ‘ ‘0
Here Z. is the transverse wave impedance of the mode with
index v.

/ !
– .2~vEptan Odl + i3~vEptan@ dl The second set of coupled differential equations are derived

0 c from (A2d) and (A2e). Specifically, we first take the inner

(A9) product of (A2d) with ~ou and then the inner product of (A2e)
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with h ~V, and combine the two to obtain the desired second

set of coupled differential equations

The system of coupled differential equations (A17) and
(A18) completely describes the coupling of modes in terms of
the modal voltage V. and modal current Iv in the nonuniform

guide.
For our purposes it is convenient to write the coupled

equations, not in terms of the modal voltage and current but in
terms of the amplitudes of forward and backward propagating
modes. The relation between these two formalisms is given in
(7). If V. and Iv in (A17) and (A18) are represented in terms of

A: and A;, we obtain the coupled mode equations (8) for the
forward and backward propagating modes in a varying-radius
coaxial guide.

XI. APPENDIX II

By using the Bessel function Wronskians and vanishing of
(29) and (36) at p = b, simplified expressions can be obtained
for the following terms:

Jm(~[mnla)
f’mm (’$rrartl~)= ~(k[:nlb)k(l$mnl~) (Bl)

(B2),fmmf(kImnla) = ~(k[~nla)

J~(k(nn)a)
fmrm(k(mn)~) = - ~(k(:n)b) J&(i$(mn)~) (B3)

~mm(k(mn)a) = - ~(k(~n)a) ~ (B4)
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